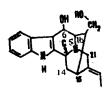
UDC 547.944/1

V. M. Malikov, M. R. Sharipov, and S. Yu. Yunusov

Ervincidine,  $C_{19}H_{24}N_2O_2$  (I), has been isolated from the ether-soluble alkaloids of the epigeal part of <u>Vinca erecta</u> [1]. Its UV spectrum is characteristic for indole bases. Its IR spectrum has a broad band at 3000-3330 cm<sup>-1</sup> due to OH and NH groups connected by a hydrogen bond.

The mass spectrum of ervincidine (Table 1) has the peaks of ions with m/e 310 (M<sup>+</sup>),  $(M-18)^+$ , 168, and 169 (maximum peak), which are similar to the peaks of the spectra of alkaloids of the sarpagine and tombosine group [2] and differ from the latter by 16 m/e. This indicates the presence of one hydroxy group in (I).

From the facts given it may be concluded that ervincidine is a hydroxy derivative of tombosine. The nonphenolic nature of the base and the presence of a maximum peak with m/e 169 in its mass spectrum shows that the hydroxy group is present in the aliphatic part of the molecule, possibly in ring C.


Acetylation with acetic anhydride gave the O-acetyl derivative of ervincidine (II). Its IR spectrum had the absorption bands of a carbonyl group and of a secondary nitrogen atom. The appearance of the peak of the molecular ion with m/e 394 in the mass spectrum of O-acetylervincidine shows the formation of an O,O'-diacetyl derivative in the acetylation of the base. In addition to the molecular ion, the spectrum of (II) also has the peaks of ions with m/e 352  $(M-CH_3C=O)^+$ , 335  $(M-CH_3COO)^+$ , 334  $(M-CH_3COOH)^+$ , 249, 169, and 168, which are typical for ether alkaloids [3]. These values show that the second hydroxy group in ervincidine is secondary and may be located in positions  $C_6$ ,  $C_{14}$ , or  $C_{21}$ .

On the basis of a comparison of the mass spectrum of (I) with those of tombosine, akuammidine, and gardnerine (see Table 1), and bearing in mind the fact that there is some possibility of a biogenetic inter-

TABLE 1

|                        | Relative intensities (%), m/e |                          |                                              |                              |
|------------------------|-------------------------------|--------------------------|----------------------------------------------|------------------------------|
| Ions                   | akuam-<br>midine,<br>R = H    | tombo-<br>sine,<br>R = H | gardner-<br>ine [5],<br>R = OCH <sub>3</sub> | ervinci-<br>dine,<br>R = H   |
| M <sup>+</sup>         | 352(100)                      | 294(100)                 | 324 (56)                                     | 310 (80)                     |
| $(M-1)^+$              | 351 (58)                      | 293 (71)                 | 323 (57)                                     | 309(75)                      |
| $(M-18)^{+}$           | 334(8)                        | 276 (5)                  | 306 (59)                                     | 292 (32)                     |
| (M-CH2OH) <sup>+</sup> | 321 (18)                      | <b>2</b> 63 (25)         | 293 (36)                                     | 279(12)                      |
| a<br>b                 | 249(62)<br>182(20)            | 249(7)<br>182(9)         | 212(16)                                      | 249 (12)<br>182(62)          |
| c<br>d                 | 169 (70)<br>168 (61)          | 169 (37)<br>168 (26)     | 199 (84)<br>198 (100)                        | 169(100)<br>168 <b>(</b> 75) |

relationship of (I) with tombosine analogous to that between gardnutine and hydroxygardnutine [4], we consider the most probable position for the hydroxy group in ervincidine to be  $C_6$  and, therefore, propose for it the structure of 6-hydroxy-16-demethoxycarbonylpolyneuridine [5].



Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 760-761, November-December, 1972. Original article submitted March 23, 1972.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

## EXPERIMENTAL

Ervincidine (I). The combined ether-extracted alkaloids (pH 8) (0.7 g) were separated according to their solubilities in benzene, acetone, and methanol. The methanol-soluble fraction yielded 95 mg of ervincidine with mp 279-280°C (decomp., methanol),  $[\alpha]_D^{25}$  + 29.5° (c 0.6; methanol),  $R_f$  0.38 (in a thin layer of silica gel in the methanol system). IR spectrum: 3330-3000, 760 cm<sup>-1</sup>. UV spectrum:  $\lambda_{max}$  227, 282, 292 nm (log  $\epsilon$  4.80, 4.11, 4.0).

O,O'-Diacetylervincidine (II). The base (15 mg) was acetylated with acetic anhydride. An amorphous substance with  $R_f$  0.45 (methanol) was obtained. IR spectrum, cm $^{-1}$ : 1720 (CO), 3400 (NH), 730 (benzene ring). Mass spectrum: 394 (100%), 352 (81), 335 (63), 334 (37), 249 (74), 169 (73), and 168 (73).

## SUMMARY

The new alkaloid ervincidine has been isolated from the epigeal part of Vinca erecta.

The results of a study of the IR, UV, and mass spectra of the base and of its O,O'-diacetyl derivative have permitted the probable structure of 6-hydroxy-16-demethoxycarbonylpolyneuridine to be put forward for ervincidine.

## LITERATURE CITED

- 1. D. A. Rakhimov, M. R. Sharipov, Kh. N. Aripov, V. M. Malikov, T. T. Shakirov, and S. Yu. Yunusov, Khim. Prirodn. Soedin., 713 (1970).
- 2. R. H. T. Manske, The Alkaloids: Chemistry and Physiology, Vol. VII, Academic Press (1965), p. 808.
- 3. H. J. Veith and M. Hesse, Helv. Chim. Acta, <u>52</u>, 7,2004 (1969).
- 4. S. Sakai, A. Kubo, T. Hamamoto, W. Wakabayashi, K. Takahashi, J. Ohtani, and J. Haginiwa, Tetrahedron Lett., 19, 1489 (1969).
- 5. L. D. Antonaccio, N. A. Pereira, B. Gilbert, H. Vorbrueggen, H. Budzikiewicz, J. M. Wilson, S. J. Durham, and C. Djerassi, J. Amer. Chem. Soc., 84, 2161 (1962).